Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rubén A. Toscano, Sergio Martínez-Vargas and Jesús Valdés-Martínez*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Cd. México, DF, Mexico

Correspondence e-mail:
jvaldes@servidor.unam.mx

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.047$
$w R$ factor $=0.102$
Data-to-parameter ratio $=10.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(4'-phenyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine- $\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)$ copper(II) bis(tetrafluoroborate)

The 4-phenylterpyridine ligand coordinates to the $\mathrm{Cu}^{\mathrm{II}}$ ion in the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$, as an $N, N^{\prime}, N^{\prime \prime}-$ terdentate meridional ligand. The geometry of the Cu atom in the cation is octahedral. The $\mathrm{BF}_{4}{ }^{-}$anions are disordered.

Comment

4^{\prime}-Phenyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (Ph-terpy) has been used as a ligand with different metal ions, and a monomeric $\mathrm{Zn}^{\text {II }}$ compound (Tu et al., 2004), as well as polymeric compounds with $\mathrm{Zn}^{\mathrm{II}}$ (Tu, Yin, He et al., 2005) and $\mathrm{Cu}^{\mathrm{II}}$ (Tu, Yin, Li et al., 2005), have been reported. As part of a research study devoted to the possible use of $\pi-\pi$ interactions arising from heterocyclic rings as a tool for the designed synthesis of molecular networks, we synthesized the title compound, (I), for a crystal structure study.

Received 27 February 2006
Accepted 15 March 2006

(I)

The asymmetric unit of (I) consists of an octahedral $[\mathrm{Cu}(\mathrm{Ph}-$ terpy $\left.)_{2}\right]^{2+}$ ion and two disordered $\mathrm{BF}_{4}{ }^{-}$anions. The Ph-terpy ligands coordinate as $N, N^{\prime}, N^{\prime \prime}$-terdentate ligands in a meridional configuration. The $\mathrm{Cu}-\mathrm{N}$ distance to the central pyridine ring is significantly shorter than the distances to the outer pyridine rings (Table 1), indicating a compressed octahedral geometry. The $\mathrm{N}-\mathrm{Cu}$ distances are within the values reported in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002) for $\left[\mathrm{Cu}(\mathrm{NNN})_{2}\right]^{2+}$ compounds with NNN being terpy- and Ph-terpy-type ligands. In these compounds the lateral pyridine $\mathrm{N}-\mathrm{Cu}$ distance ranges from 2.059 to $2.335 \AA$ with a mean value of 2.18 (7) \AA; the middle pyridine $\mathrm{Cu}-\mathrm{N}$ distance ranges from 1.915 to $2.009 \AA$ with a mean of 1.98 (3) Å [terpy ligand CSD refcodes: BEJPUB (Arriortua et al., 1982), BEJPUB01 (Olmstead, et al., 2004), NELKEU (Valdés-Martínez et al., 2001), SIBWEF (Folgado et al., 1990) and TERPYC01 (Allmann, et al., 1978); Ph-terpy ligand refcodes: KOFQAX (Alcock et al., 2000), NIQTAI (Storrier et

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are shown as circles of arbitrary radii. Only the major components of disordered atoms are shown.

Figure 2
A molecular packing diagram of (I), viewed down the a axis. Only the major components of disordered atoms are shown.
al., 1997), PULCAA (Whittle et al., 1998) and SIMJAZ (Storrier et al., 1998)].

The terpy portion of the Ph-terpy ligands deviates from planarity as indicated by the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles (Table 1). The phenyl rings are twisted significantly from the terpy group; the angles between the mean planes of the phenyl rings C19-C24 and C43-C48 and the mean planes of the py rings to which they are attached are 32.5 (2) and 45.5 (2) ${ }^{\circ}$, respectively.

The molecules pack as shown in Fig. 2. The only possible $\pi-$ π interaction within accepted centroid-centroid values (Janiak, 2000) is between the pyridyl ring N37/C38-C42 and the phenyl ring $\mathrm{C} 43-\mathrm{C} 48$ of the molecule generated by the symmetry code $\left(-x, \frac{1}{2}+y, \frac{1}{2}-z\right)(3.890 \AA)$; however, the distance is at the upper limit and the rings are not parallel [dihedral angle between planes: $10.6(2)^{\circ}$]. Contrary to what is observed for bis(2,2;6,2-terpyridyl) metal complexes functionalized with biphenyl 'tails', where coordination polymers assembled through $\pi-\pi$ interactions were obtained (Alcock et al., 2000), the $\pi-\pi$ interactions in (I) are not capable of overcoming the collective directional 'packing forces' influencing the molecular arrangement in the crystal structure.

Experimental

4^{\prime}-Phenyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine was synthesized according to a published procedure (Constable et al., 1990). An aqueous solution (10 ml) of copper(II) tetrafluoroborate hydrate $(23.72 \mathrm{mg}$, $0.10 \mathrm{mmol})$ was added to a ethanol solution (10 ml) of 4^{\prime}-phenyl$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine $(30.9 \mathrm{mg}, 0.10 \mathrm{mmol})$, forming a light-blue solution. Blue crystals suitable for X-ray structure determination were obtained by slow evaporation after three days at room temperature.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$
$M_{r}=855.88$
Monoclinic, $P 2_{1} / c$
$a=9.4054$ (4) А
$b=12.8726(6) \AA$
$c=31.520$ (1) \AA
$\beta=98.354(1)^{\circ}$
$V=3775.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7974
reflections
$\theta=2.4-24.7^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, blue
$0.27 \times 0.16 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: analytical
(SHELXTL; Sheldrick, 2000)
$T_{\text {min }}=0.849, T_{\text {max }}=0.947$
30307 measured reflections

6637 independent reflections
4253 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-37 \rightarrow 37$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.102$
$S=0.88$
6637 reflections
624 parameters

H -atom parameters constrained
H -atom parameters constrain
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0481 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{N} 31$	$1.954(3)$	$\mathrm{Cu} 1-\mathrm{N} 37$	$2.139(3)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$2.004(3)$	$\mathrm{Cu} 1-\mathrm{N} 13$	$2.217(3)$
$\mathrm{Cu} 1-\mathrm{N} 25$	$2.130(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.231(3)$
N31-Cu1-N7	$173.76(11)$	$\mathrm{N} 25-\mathrm{Cu} 1-\mathrm{N} 13$	$87.02(11)$
N31-Cu1-N25	$78.29(11)$	$\mathrm{N} 37-\mathrm{Cu} 1-\mathrm{N} 13$	$96.19(10)$
N7-Cu1-N25	$101.97(10)$	$\mathrm{N} 31-\mathrm{Cu} 1-\mathrm{N} 1$	$97.15(11)$
N31-Cu1-N37	$78.13(10)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 1$	$76.61(11)$
N7-Cu1-N37	$102.03(10)$	$\mathrm{N} 25-\mathrm{Cu} 1-\mathrm{N} 1$	$97.15(10)$
N25-Cu1-N37	$155.87(11)$	$\mathrm{N} 37-\mathrm{Cu} 1-\mathrm{N} 1$	$90.76(10)$
N31-Cu1-N13	$109.75(11)$	$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{N} 1$	$153.05(11)$
N7-Cu1-N13	$76.47(11)$		
N1-C2-C8-N7	$-4.1(5)$	$\mathrm{N} 25-\mathrm{C} 26-\mathrm{C} 32-\mathrm{N} 31$	$-7.5(5)$
N7-C12-C14-N13	$-7.4(5)$	$\mathrm{N} 31-\mathrm{C} 36-\mathrm{C} 38-\mathrm{N} 37$	$6.1(5)$

H atoms were located in a difference Fourier map and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. Both BF_{4} anions were found to be disordered over (at least) two sites with occupation factors of 0.554 (5) and 0.446 (5) for B1/F1-F4 and 0.520 (8) and 0.480 (8) for B2/F5-F8. A split model with restrained B-F and F-F distances was introduced.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to

metal-organic papers

refine structure: SHELXTL; molecular graphics: X-SEED (Version 2.0; Barbour, 2001); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004).

The authors are grateful to UNAM and CONACYT (40332Q) for financial support and V. Gómez-Vidales for technical assistance.

References

Alcock, N. W., Barker, P. R., Haider, J. M., Hannon, M. J., Painting, C. L., Pikramenou, Z., Plummer, E. A., Rissanen, K. \& Saarenketo, P. (2000). J. Chem. Soc. Dalton Trans. pp. 1447-1461.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Allmann, R., Henke, V. \& Reinen, V. (1978). Inorg. Chem. 17, 378-382.
Arriortua, M. I., Rojo, V., Amigo, V., Germain, G. \& Declercq, J. P. (1982). Acta Cryst. B38, 1323 -1324.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (1999). SMART (Version 5.625) and SAINT-Plus (Version 6.23C). Bruker AXS Inc., Madison, Wisconsin, USA.

Constable, E. C., Lewis, J., Liptrot, M. C. \& Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.
Folgado, J.-V., Henke, W., Allmann, R., Stratemeier, H., Beltran-Porter, D., Rojo, T. \& Reinen, D. (1990). Inorg. Chem. 29, 2035-2042.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Olmstead, M. M., Safari, N., Haddadzadeh, H. \& Rezvani, A.-R. (2004). Private Communication.
Sheldrick, G. M. (2000). SHELXTL. Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Storrier, G. D., Colbran, S. B. \& Craig, D. C. (1997). J. Chem. Soc. Dalton Trans. pp. 3011-3028.
Storrier, G. D., Colbran, S. B. \& Craig, D. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1351-1364.
Tu, Q.-D., Li, D., Wu, T., Yin, Y.-G. \& Ng, S. W. (2004). Acta Cryst. E60, m1403m1404.
Tu, Q.-D., Yin, Y.-G., He, J., Xiang, J., Li, D. \& Ng, S. W. (2005). Acta Cryst. E61, m254-m256.
Tu, Q.-D., Yin, Y.-G., Li, D., Huang, X.-C. \& Ng, S. W. (2005). Acta Cryst. E61, m103-m105.
Valdés-Martínez, J., Toscano, R. A. \& Salazar-Mendoza, D. (2001). Acta Cryst. E57, m331-m332.
Whittle, B., Horwood, E. L., Rees, L. H., Batten, S. R., Jeffery, J. C. \& Ward, M. D. (1998). Polyhedron, 17, 373-380.

[^0]: © 2006 International Union of Crystallography All rights reserved

